首页> 外文OA文献 >Context enhancement through image fusion: A multiresolution approach based on convolution of cauchy distributions
【2h】

Context enhancement through image fusion: A multiresolution approach based on convolution of cauchy distributions

机译:通过图像融合增强上下文:基于柯西分布卷积的多分辨率方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel context enhancement technique is presented to automatically combine images of the same scene captured at different times or seasons. A unique characteristic of the algorithm is its ability to extract and maintain the meaningful information in the enhanced image while recovering the surrounding scene information by fusing the background image. The input images are first decomposed into multiresolution representations using the Dual-Tree Complex Wavelet Transform (DT-CWT) with the subband coefficients modelled as Cauchy random variables. Then, the convolution of Cauchy distributions is applied as a probabilistic prior to model the fused coefficients, and the weights used to combine the source images are optimised via Maximum Likelihood (ML) estimation. Finally, the importance map is produced to construct the composite approximation image. Experiments show that this new model significantly improves the reliability of the feature selection and enhances fusion process.
机译:提出了一种新颖的上下文增强技术,可以自动组合在不同时间或季节捕获的同一场景的图像。该算法的独特之处在于它能够提取和维护增强图像中有意义的信息,同时通过融合背景图像来恢复周围的场景信息。首先使用双树复数小波变换(DT-CWT)将输入图像分解为多分辨率表示,并将子带系数建模为柯西随机变量。然后,在对融合系数建模之前,将柯西分布的卷积作为概率应用,并通过最大似然(ML)估计来优化用于组合源图像的权重。最后,产生重要性图以构造合成近似图像。实验表明,该新模型显着提高了特征选择的可靠性并增强了融合过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号